*Marcelo Viana 

Batalha matemática entre Niccolò Tartaglia e Lodovico Ferrari, discípulo de Gerolamo Cardano, marcou a carreira do primeiro. 

No início do século 16, o italiano Scipione del Ferro (1465–1526) descobriu um método para encontrar as soluções de qualquer equação cúbica especial x³+mx=n. Del Ferro ganhava a vida resolvendo problemas de matemática, e essa equação era a sua grande façanha. Guardou o segredo até morrer, quando o deixou a seu aprendiz Antonio Fior.

Toda equação cúbica ax³+bx²+cx+d=0 pode ser reduzida à forma especial e, portanto, sem saber ele resolvera um problema muito mais geral, que remontava a 2.000 a.C.. Sem saber, porque para fazer a redução é necessário usar coeficientes m e n tanto positivos como negativos, e na época os negativos ainda não tinham sido descobertos.

Em 1530, surge um concorrente: Niccolò Tartaglia (1500–1557) anunciou que também sabia resolver equações cúbicas. Preocupado, Fior desafiou-o para um duelo: cada um proporia equações ao rival e quem resolvesse mais ganharia a aposta. Fior propôs equações do tipo especial, que ambos sabiam resolver. Já o astuto Tartaglia optou por equações do tipo x³+mx²=n, que Fior foi incapaz de resolver.

Entra em cena um dos personagens mais fascinantes do Renascimento italiano: Gerolamo Cardano (1501–1576). Matemático, médico, biólogo, químico, astrônomo, astrólogo, filósofo e escritor, ele era também jogador inveterado. O seu interesse pelos jogos de azar o levou a ser um dos pioneiros da teoria da probabilidade.

Em 1539, Cardano convenceu Tartaglia a lhe revelar o seu método, prometendo não revelar a ninguém. Mas em seu livro Artis Magnae (Grande Arte, em latim), de 1545, publicou o método de Scipione del Ferro, que também aprendera.

Embora não fosse quebra do combinado, estritamente falando, Tartaglia sentiu-se traído, e desafiou Cardano para um duelo matemático. Esse recusou, mas foi substituído por seu discípulo Lodovico Ferrari (1522–1565), que ganhou a disputa, arruinando a carreira de Tartaglia.

Ferrari não era um discípulo qualquer. Em 1540, descobrira a solução da equação quártica ax⁴ +bx³+cx²+dx+e=0, que Cardano também publicou na Artis Magnae.

A expectativa de que logo se seguiriam as equações de grau maior foi frustrada no início do século 19, quando o italiano Paolo Ruffini (1765–1822) e o norueguês Niels Henrik Abel (1802–1829) mostraram que a partir do grau 5 não existem resoluções desse tipo.

O trabalho do francês Évariste Galois (1811–1832), publicado postumamente em 1846, culminou essa aventura, criando uma teoria geral da solução das equações polinomiais.

*Diretor-geral do Instituto de Matemática Pura e Aplicada. Matéria na Folha de São Paulo, Caderno Ciência, de 01/04/2021.
Compartilhar

DEIXE UMA RESPOSTA

Por favor digite seu comentário
Por favor informe seu nome aqui